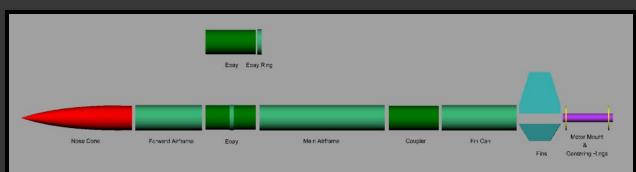
NORTHWEST INDIAN COLLEGE SPACE CENTER

Team RPGs Critical Design Review


Vehicle Dimensions

Length Weight *Center of Gravity *Static Stability 89.50 6.75/14.5 50.80/57.77 3.20/2.06

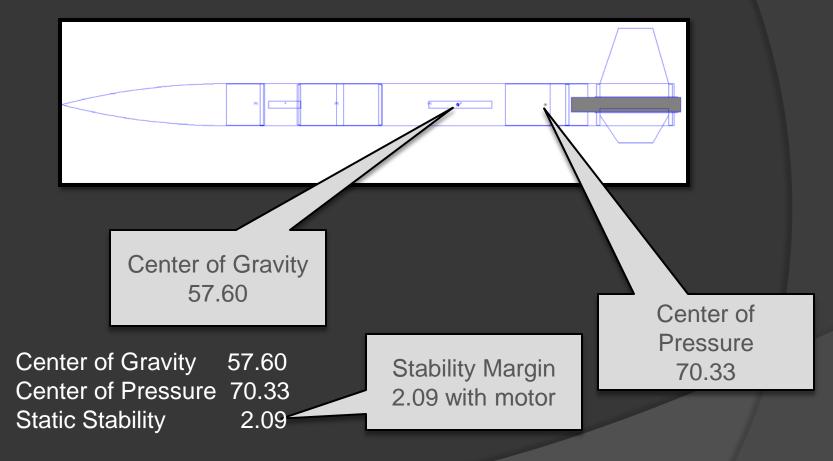
Diameter	6.00
Fin Span	22.00
Center of Pressure	70.33

*unload/loaded

Materials

- The rocket airframe is carbon fiber
- The nosecone is carbon fiber
- The fins are ¼" aircraft-grade plywood
- Three fins are attached through the wall to the 54 mm motor tube 1/2 inch above the aft edge of the airframe.
- The fins are fastened in place with West Systems 2-part epoxy resin and reinforced with a fiberglass inlay across the inside.

Design Features

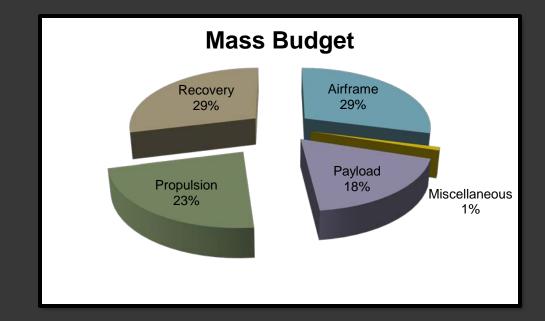

- Water resistant rocket.
- Very lightweight rocket for our engineering project
- Carbon fiber had the best qualities over fiberglass and Blue tube
- Payload is a multirotor (quadcopter) vehicle that will tow rocket back to launch pad

Motor Selection & Justification

Cesaroni Technology Incorporated (CTI) Pro54 K445 Classic

- Motor has enough thrust to get the rocket safely off the launch rail.
- Motor has enough thrust to achieve the predicted altitude.

Static Stability Margin

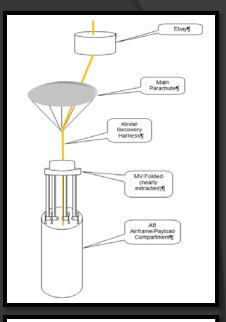

Stability Margin = (CP-CG)/Diameter

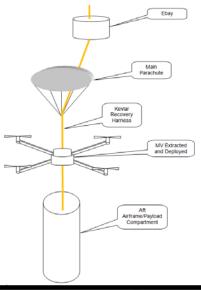
Thrust-to-Weight Ratio

Thrust to Weight Ratio = Pounds of Thrust/Weight of Salish Star

Motor	Max Thrust	Load Weight	Ratio
K445	149.453	15.3	10:1

Mass Statement and Margin




The selected motor has reserve power for up to 13 extra pounds and still deliver a safe liftoff and flight.

Recovery System (1 of 2)

	DIA.	TENSILE	WEIGHT
	DIA.	STRENGTH (lbs.)	(lbs. per 100ft.)
Kevlar	1/8"	1,500	0.650
Tubular	1/2"	2,000	2.065
Nylon	1"	4,000	4.200
Evobolt	1/4"	500	0.090 lbs
Eyebolt	3/8"	1,200	0.190 lbs

- Parachute: Main: 52"
- Parachute: Drogue: 28"
- Recovery harnesses 1/8" Kevlar with a 24" head and tail of 9/16" tubular nylon.
- Drogue harness 24 feet long.
- Main harness 24 feet long.
- Each harness end is connected to a 1/8" Kevlar loop with quicklinks.

Recovery System Properties (2 of 2)

Drogue Parachute				
Manufact	urer/Model		Top Flite	
S	ize		28	
Altitude	at Deployn	nent (ft)	5,2	80
Velocity	at Deploym	ent (ft/s)	0.00	024
Termi	nal Velocity	∕ (ft/s)	59.	41
Recover	ry Harness	Material	Kev	/lar
Harness	ness Size/Thickness (in)		1/	8"
Recovery	/ Harness L	.ength (ft)	2	4
Harness/ Interf	/Airframe faces			
Kinetic Energy	Section 1	Section 2	Section 3	Section 4
During Descent (ft-lb)	417	64	324	

Main Parachute						
Manufa	cturer/Mode			Тс	op Flite	
	Size				50	
Alti	tude at Deple	oyme	nt (ft)			800
Velo	city at Deplo	ymen	nt (ft/s)		5	59.41
L	anding Velo	city (fi	t/s)		2	21.27
Recovery Harness Material Kevlar				levlar		
Harness Size/Thickness (in)			1/8"			
Reco	overy Harnes	s Len	igth (ft)			24
Harness/Airframe			Kevlar Lo	ops		
Kinetic Energy	Section 1	Section 2 Section 3 Secti			Section 4	
Upon Landing (ft-lb)	67		10		52	

Predicted Drift from the Launch Pad

Wind Speed (Kts)					
0-2 3-7 8-14 15-25 20-30					
159 451 749 825 1641					

Test Plans and Procedures (1 of 2)

Safety Officer – Justin is responsible for ensuring that all safety procedures, regulations, and risk assessments are followed.

The Northwest Indian College Space Center has a 5000 foot waiver from the US and the Canadian aviation agencies. We can launch our rockets from 9:00 to 1300 on Friday, Saturday or Sunday.

Safety Rules and Regulations Potential Failure Modes and Mitigation

Launch Vehicle Verification (1 of 2)

- Ground Tests
- Simulation Examinations
- Visual Inspections
- NAR Mentor Inspections
- Test Flights
- Data Analysis

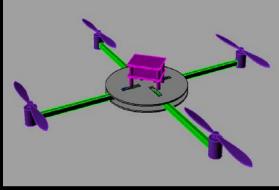
Test Plan Overview

- Black Powder Ground Tests
- Avionics Inspection and Tests
- Visual Inspections
- NAR Mentor Inspections
- Scheduled Test Flights
- Data Analysis

Scale Test Flight

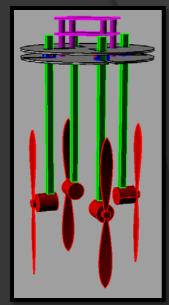
Salish Star Jr Length: 48.2000 ln., Diameter: 3.1000 ln., Span diameter: 9.6000 ln. Mass 18.42979 Lb., Selected stage mass 1.842979 Lb. CG: 25.3762 ln., CP: 39.3122 ln., Margin: 4.50 Overstable Shown without engines.

Stability Data Records


Model MV

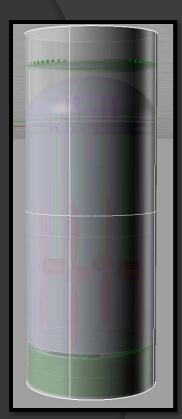
Staged Recovery System Tests

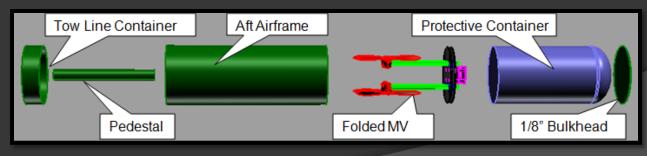
- Black Powder Ground Tests
- Manually extracted recovery system for test purposes
- Subscale Flight Test
- Full Scale Flight Test
- Manually extracted recovery system for test purposes


Science Payload

	Diameter In.	Height In.
Folded	5.75	26.00
Extended	18.00	6.00

Plan View




Folded View

Multirotor Vehicle

Final Payload Design Overview

System	Subsystem	Evaluation	Verification	
Fuselage	Body	Construction Inspection		
	Arms	Construction		
	Motors	Thrust Tests		
Propulsion	ESC	Voltage tests		
	Propellers	Balancing		
	Batteries	Voltage check	Toot Elighto	
Electronics	Flight Controller Bench testing		Test Flights	
	Autopilot	Bench testing		
	Upper Section			
Tow Harness	Lower Section	Ground and air testing		
	Connecting quicklinks			
RC Equipment	Transmitter and Receiver	Ground and air testing		

Payload Test & Verification

Feature	Verification Plan	Status
Construct MV fuselage	Inspection	Complete
Arm folding	Inspection	Work in progress
Motor thrust testing	Bench test	Complete
Propeller balancing	Bench test	Complete
Flight controller construction	Inspection	Complete
Flight controller testing	Bench test	Complete
Autopilot construction	Inspection	Complete
Autopilot testing	Bench test	Work in progress
RC Testing	Flight tests	Work in progress

Payload Test Plan

- Test each component as it's built
- Gather baseline data for each component
- Integrate one component at a time and verify it's functioning satisfactorily
- Ground test entire system
- Flight test payload

Interfaces

- Constructed of lightweight carbon fiber
- Permanent Joints Connected with West Systems Epoxy
- Temporary Connections Fastened with 10-54 T-nuts and Screws
- Ebay Fastened with #2-56 Nylon Machine Screws acting as shear pins

Requirements Verification Status

Registererst	Design Feature	Verification	Status
each foot achieved above the target altitude. Any team whose	Design through Rocksim 9, Power Management System	Test	Work in Progress
	Safe Recovery will preclude this		Work in Progress
b. The team does not report to the NASA official designated to record the altitude with their official marked altimeter by 5:00 pm on the day of the launch.	Check list will preclude this	Inspection	Work in Progress
11. The launch vehicle shall be capable of being prepared for flight at the launch site within 2 hours, from the time the waiver opens.	Designed as required	Check lists	Work in Progress
	Battery power calculated to last at least 2 hrs for each device using a battery	Simulation analysis	Work in Progress
collected analyzed and reported by the team tollowing the	Data analysis will be examined post flight	Testing will follow payload completion prior to the competition flight	Work in Progress
exceed 5 12() Newton-seconds (L-class) This total impulse	Designed as required, L motor largest permissible	Inspection	Complete

Requirements Verification Status

19. All teams shall successfully launch and recover their full scale rocket prior to FRR in its final flight configuration.			
a. The purpose of the full scale demonstration flight is to demonstrate the launch vehicle's stability, structural integrity, recovery systems, and the team's ability to prepare the launch vehicle for flight.	Test flights scheduled prior to FRR	Test flight	Work in Progress
b. The vehicle and recovery system shall have functioned as designed.	Extensive ground testing where possible, test flights for the vehicle		Work in Progress
c. The payload does not have to be flown during the full-scale test flight.			

Requirements Verification Status

e. The success of the full scale demonstration flight shall be documented on the flight certification form, by a Level 2 NAR/TRA observer.	Our mentor and 2 other NAR L2 individuals are available	· Test flight	Work in Progress
f. After successfully completing the full-scale demonstration flight, the launch vehicle or any of its components shall not be modified without the concurrence of the NASA Range Safety Officer.	No changes will be made.	restnight	Work in Progress
22. Students on the team shall do 100% of the work on the project, including design, construction, written reports, presentations, and flight preparation with the exception of assembling the motors and handling black powder charges.	Implemented as required	Inspection	Work in Progress
24. The maximum amount teams may spend on the rocket and payload is \$5000 total. The cost is for the competition rocket as it sits on the pad, including all purchased components and materials and the fair market value of all donated components and materials. The following items may be omitted from the total cost of the vehicle:			In Progress